GO otterSec

Security Assessment

August 8th, 2025 — Prepared by OtterSec

Nicola Vella

Michael Debono

Jinwoo Lee

Robert Chen

nickOve@osec.io

mixyl@osec.io

jin@osec.io

r@osec.io


mailto:nick0ve@osec.io
mailto:mixy1@osec.io
mailto:jin@osec.io
mailto:r@osec.io

Table of Contents

Executive Summary 2
Overview 2
Key Findings 2

Scope 3

Findings 4

Vulnerabilities 5
0S-JBM-ADV-00 | Absence of Signature Verification in BAM Mode 7
0S-JBM-ADV-01 | Improper Tip Handling and Missing Blocklist Enforcement 8
0S-JBM-ADV-02 | Missing Domain Separator 9
0S-JBM-ADV-03 | Risk of Transaction Replay 10
0S-JBM-ADV-04 | Lack of Precompile Fee Accounting 11
0S-JBM-ADV-05 | Denial of Service on New Batch Insertion 12
0S-JBM-ADV-06 | Failure to Cap Commission Value 13
0S-JBM-ADV-07 | Inconsistency in Vote Transaction Filtering Logic 14

General Findings 15
0S-JBM-SUG-00 | Incorrect Error Index Reporting 16

Appendices

Vulnerability Rating Scale 17

Procedure 18

© 2025 Otter Audits LLC. All Rights Reserved. 1/18



01 — Executive Summary

Overview

Jito Labs engaged OtterSec to assess the bam-validator program. This assessment was conducted
between June 29th and August 5th, 2025. For more information on our auditing methodology, refer to
Appendix B.

Key Findings
We produced 9 findings throughout this audit engagement.

In particular, we identified a high-risk vulnerability concerning the lack of signature verification in BAM
mode, allowing malicious nodes to inject invalid packets and risk validator DoS and consensus divergence
(OS-JBM-ADV-00), and another signature replay issue, where the BAM auth challenge is signed without
domain separation, rendering the signature re-utilizable in other contexts (OS-JBM-ADV-02). Also, if the
transaction sending and confirmation fail, the payment transaction may still be processed later, risking
duplicate fee payments if the same transaction is re -sent after the failure (OS-JBM-ADV-03).

Additionally, tips may be lost due to uncranked payment instructions, and there is a possibility of restricted
accounts bypassing protections due to missing blocklist enforcement (OS-JBM-ADV-01), and the fee
calculation logic while calculating the payment amount overlooks precompile signature instruction costs,
potentially overestimating excess fees and overpaying the BAM node (OS-JBM-ADV-04).

Furthermore, while updating the builder commission value in the BAM manager module, there is a lack of
an upper bound check on the value of the commission, allowing excessively high inputs that may result in
an invalid state and disrupt validator reward distribution (OS-JBM-ADV-06).

We also recommended utilizing the actual index of the failing transaction when validating each transaction
in a batch, to improve the accuracy of error reporting (0S-JBM-SUG-00).

© 2025 Otter Audits LLC. All Rights Reserved. 2/18



02 — Scope

The source code was delivered to us in a Git repository at https://github.com/jito-labs/jito-solana-jds.
This audit was performed against commit 1d83c0Oa.

A brief description of the programs is as follows:

Name Description

Extends the Jito-Solana client to allow validators to delegate transaction
ordering to external schedulers via gRPC, enabling optimized block
construction while preserving validator control and Solana's execution
rules.

bam - validator

© 2025 Otter Audits LLC. All Rights Reserved. 3/18


https://github.com/jito-labs/jito-solana-jds
https://github.com/jito-labs/jito-solana-jds/commit/1d83c0a343a1615a677ba7a8dba6037fec74f29b

03 — Findings

Overall, we reported 9 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings do not have an immediate impact but will

aid in mitigating future vulnerabilities.

© 2025 Otter Audits LLC. All Rights Reserved.

Severity Count

CRITICAL 0
HIGH
MEDIUM
Low
INFO

4/18



04 — Vulnerabilities

Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

ID Severity Status Description

Signature verification check is not performed

HIGH RESOLVED ® in BAM mode, allowing malicious nodes to in-
ject invalid packets and risk validator DoS and
consensus divergence.

0S-JBM-ADV-00

Tips may be lost due to uncranked payment in-

HIGH RESOLVED ® structions, and missing blocklist enforcement
allows restricted accounts to bypass protec-
tions.

0S-JBM-ADV-01

O BB o1 veD 3 The BAM auth challenge is signed without do-
0S-JBM-ADV-02 main separation, rendering the signature re-
utilizable in other contexts.

Currently, if send_and_confirm_transaction
0S-JBM-ADV-03 il M RESCOVEDIS) fails, the payment transaction may still be
processed later, risking duplicate fee payments.

The fee calculation in
calculate_payment_amount overlooks

0S-JBM-ADV-04 MEBFUM RESOIVERIO precompile signhature instruction costs, po-
tentially overestimating excess fees and
overpaying the BAM node.

insert_new_batch may exceed the con-
MEDIUM RESOLVED ® tainer's capacity without evicting entries, re-

sulting in get_vacant_map_entry panicking

and creating a denial-of - service scenario.

0S-JBM-ADV-05

© 2025 Otter Audits LLC. All Rights Reserved. 5/18



Jito BAM Validator Audit 04 — Vulnerabilities

There is a lack of an upper bound check on the
LOW RESOLVED ® value of builder commission, allowing exces-
sively high inputs that may result in an invalid
state and disrupt validator reward distribution.

0S-JBM-ADV-06

LOW RESOLVED © parse_bundle fails to reject vote transactions
0S-JBM-ADV-07 from BAM nodes, deviating from BAM protocol
specifications.

© 2025 Otter Audits LLC. All Rights Reserved. 6/18



Jito BAM Validator Audit 04 — Vulnerabilities

Absence of Signature Verification in BAM Mode HiGH 0S-JBM-ADV-00

Description

Currently in BAM mode, packets bypass the stigverify step, implying transactions are not validated
for proper cryptographic signatures. Consequently, this allows a malicious BAM node to inject invalid
transactions into a validator's pipeline, resulting in denial-of-service for validators and state divergence.
Such divergence creates consensus forking, violating the invariant that BAM nodes should only stall
transaction flow or fail, and not compromise correctness.

Remediation

Add sigverify checks for BAM-mode transactions.

Patch

Resolved in 8ce6993.

© 2025 Otter Audits LLC. All Rights Reserved. 7118


https://github.com/jito-labs/jito-solana-jds/commit/8ce6993d8938c2422cbeff55437f7f6f794cfd70

Jito BAM Validator Audit 04 — Vulnerabilities

Improper Tip Handling and Missing Blocklist Enforcement HiGH 0S-JBM-ADV-01

Description

The system fails to crank tip payment instructions before executing a tip transfer, causing pending tips to
be skipped and resulting in lost validator rewards. This undermines the incentive mechanism by reducing
earned fees. Additionally, the blocklist for the tip payment account is not enforced, allowing restricted or
malicious accounts to interact with the system.

Remediation

Ensure the tip payment instructions aren’t cranked before a tip transfer and add the blocklist for the tip
payment account.

Patch

Resolved in ddf9e55 and 8370f94.

© 2025 Otter Audits LLC. All Rights Reserved. 8/18


https://github.com/jito-labs/jito-solana-jds/commit/ddf9e55fd105ce5c3f71fd3f89f2f5ce27e92b8c
https://github.com/jito-labs/jito-solana-jds/commit/8370f94bd58c641a94150adfa47c8a27c0a7d889

Jito BAM Validator Audit 04 — Vulnerabilities

Missing Domain Separator MEebiuM 0S-JBM-ADV-02

Description

prepare_auth_proof in bam_connection signs arbitrary challenge data from the BAM scheduler
without applying domain separation. This results in a vulnerability because the signed message may be
re-utilized in unintended contexts. Without a fixed prefix, the signature is not cryptographically bound
to the BAM authentication domain. To prevent misuse, the signed message should include a domain
separator.

>_ core/src/bam_connection.rs

async fn prepare_auth_proof(
validator_client: &mut BamNodeApiClient<tonic::transport::channel::Channel>,
cluster_info: Arc<ClusterInfo>,
) —> Option<AuthProof> {
let request = tonic::Request::new(AuthChallengeRequest {});
let Ok(resp) = validator_client.get_auth_challenge(request).await else {
error! ("Failed to get auth challenge");
return None;
s
let resp = resp.into_inner();
let challenge_to_sign = resp.challenge_to_sign;
let challenge_bytes = challenge_to_sign.as_bytes();

let signature = Self::sign_message(cluster_info.keypair().as_ref(), challenge_bytes)?;

[oool

Remediation

Pre-append a domain separator such as \xffsolana offchain-jito bam to the message in
bam_connection so thatit is only possible for it to be exclusively utilized for only BAM authentication.

Patch

Resolved in f55¢c5b5.

© 2025 Otter Audits LLC. All Rights Reserved. 9/18


https://github.com/jito-labs/jito-solana-jds/commit/f55c5b5541460e3439a9ef202afb0274caa39696

Jito BAM Validator Audit 04 — Vulnerabilities

Risk of Transaction Replay MEDIUM 0S-JBM-ADV-03

Description

In the current implementation, bam_payment: :payment_successful assumes that a failure in
send_and_confirm_transaction implies the transaction did not land on-chain. However, due to

potential network or RPC issues, the transaction may have succeeded without local confirmation. Retrying
the transaction in such cases may result in duplicate payments and overpayment.

>_ core/src/bam_payment.rs

fn payment_successful(
rpc_url: &str,
txn: &VersionedTransaction,
lowest_slot: Slot,
highest_slot: Slot,

) —=> bool {

let rpc_client = RpcClient::new_with_commitment(rpc_url, CommitmentConfig::confirmed());
if let Err(err) = rpc_client.send_and_confirm_transaction(txn) {
error! (
"Failed to send payment transaction for slot range ({}, {}): {}",
lowest_slot, highest_slot, err

Remediation

Utilize durable nonces to ensure the transaction is only valid for a single execution.

Patch

Bam payments have been disabled.

© 2025 Otter Audits LLC. All Rights Reserved. 10/18



Jito BAM Validator Audit 04 — Vulnerabilities

Lack of Precompile Fee Accounting MEDIUM 0S-JBM-ADV-04

Description

The fee calculation logic in calculate_payment_amount in bam_payment incorrectly assumes that
the base cost of a transaction is solely determined by the number of signatures. It subtracts a fixed
BASE_FEE_LAMPORT_PER_SIGNATURE from the total fee to compute the payment base, but this neglects
the costs of precompile signature instructions such as ed25519, secp256kl, and secp256rl, which

incur significant compute unit costs. As a result, the function overestimates the fee and overpays the BAM
node.

>_ core/src/bam_payment.rs

pub fn calculate_payment_amount(blockstore: &Blockstore, slot: u64) -> Option<u64> {
[...]
const BASE_FEE_LAMPORT_PER_SIGNATURE: u64 = 5_000;
Some (
block
.transactions
dter ()
.map (| tx| {
let fee = tx.meta.fee;
let base_fee = BASE_FEE_LAMPORT_PER_SIGNATURE
.saturating_mul(tx.transaction.signatures.len() as u64);
fee.saturating_sub(base_fee)
b
.sum: :<u64> ()
.saturating_mul(COMMISSION_PERCENTAGE)
.saturating_div(100),

Remediation

Ensure proper accounting, considering all protocol-imposed base costs, including precompile execution.

Patch

Resolved in ed0e01a.

© 2025 Otter Audits LLC. All Rights Reserved. 11/18


https://github.com/jito-labs/jito-solana-jds/commit/ed0e01a251cf4d1e04bbdb0b6049b1e5da8ae6d7

Jito BAM Validator Audit 04 — Vulnerabilities

Denial of Service on New Batch Insertion Mebium 0S-JBM-ADV-05

Description

get_vacant_map_entry in transaction_state_container panics whentheinternal Slab exceeds
its capacity, due to an assertion. This assertion panics when the number of elements in
id_to_transaction_state reaches its maximum capacity . This is problematic because

insert_new_batch does not check or preemptively manage capacity before calling it multiple times in
a loop.

>_ core/src/banking_stage/transaction_scheduler/transaction_state_container.rs

fn get_vacant_map_entry(&mut self) -> VacantEntry<BatchIdOrTransactionState<Tx>> {
assert! (self.id_to_transaction_state.len() < self.id_to_transaction_state.capacity());
self.id_to_transaction_state.vacant_entry()

Thus, since {insert_new_batch does not perform any eviction similar to what push_ids_into_queue
does, if multiple batches are inserted rapidly, the Slab may exceed capacity, triggering a panic on
the next get_vacant_map_entry , creating a denial of service scenario.

Remediation

Replace the hard assertion with a graceful fallback.

Patch

Resolved in 18ea92b.

© 2025 Otter Audits LLC. All Rights Reserved. 12 /18


https://github.com/jito-labs/bam-client/commit/18ea92bd3d62a63b55db033b58a032b8f2f8e491

Jito BAM Validator Audit 04 — Vulnerabilities

Failure to Cap Commission Value Low 0S-JBM-ADV-06

Description

update_block_engine_key_and_commission in bam_manager blindly accepts and applies the

builder_commission value from the BAM config without enforcing an upper bound. This is risky
because an abnormally high commission may create issues downstream in the validator, potentially
resulting in an invalid state that affects validators’ MEV earnings.

>_ core/src/bam_manager.rs

fn update_block_engine_key_and_commission(
config: Option<&ConfigResponse>,
block_builder_fee_info: &Arc<Mutex<BlockBuilderFeeInfo>>,
) 1
[...]
let commission = builder_info.builder_commission;
let mut block_builder_fee_info = block_builder_fee_info.lock().unwrap();
block_builder_fee_info.block_builder = pubkey;
block_builder_fee_info.block_builder_commission = commission;

Remediation

Add a sanity check to reject unreasonable commission values to help maintain correctness.

Patch

Resolved in 75¢c2319.

© 2025 Otter Audits LLC. All Rights Reserved. 13/18


https://github.com/jito-labs/jito-solana-jds/commit/75c2319d9c51018d3a49e6af4aaee3122ac12ed2

Jito BAM Validator Audit 04 — Vulnerabilities

Inconsistency in Vote Transaction Filtering Logic Low 0S-JBM-ADV-07

Description

BamReceiveAndBuffer: :parse_bundle does not enforce BAM's specification that prohibits vote
transactions in incoming bundles. Without this check, vote transactions may be accepted and scheduled,
violating protocol rules. Add a check to reject vote transactions from BAM nodes.

Remediation

Reject such transactions in parse_bundle , ensuring adherence to BAM specifications.

Patch

Resolved in fc1bb8f.

© 2025 Otter Audits LLC. All Rights Reserved. 14 /18


https://github.com/jito-labs/jito-solana-jds/commit/fc1bb8f36a8943921a9944a27ade6ba0196e5ee5

05 — General Findings

Here, we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent anti-patterns and may result in security issues in the future.

ID Description

parse_batch incorrectly reports all deserialization errors at index: ©
0S-JBM-SUG-00 , even when failures occur later in the batch, resulting in inaccurate error
attribution.

© 2025 Otter Audits LLC. All Rights Reserved. 15/18



Jito BAM Validator Audit 05 — General Findings

Incorrect Error Index Reporting 0S-JBM-SUG-00

Description

parse_batch in bam_receive_and_buffer validates each transaction in a batch, but incorrectly
hardcodes -index: © when reporting deserialization errors, even though it is processing multiple
transactions in a loop and the failure occurs in a later transaction. This results in misleading diagnostics
hindering the debugging process, as the hardcoded index may misrepresent which transaction failed.

>_ core/src/banking_stage/transaction_scheduler/bam_receive_and_buffer.rs

fn parse_batch(

batch: &AtomicTxnBatch,

bank_forks: &Arc<RwLock<BankForks>>,
) —> Result<ParsedBatch, Reason> {

[...]

for (index, parsed_packet) in parsed_packets.drain(..).enumerate() {

let Some((tx, deactivation_slot)) = parsed_packet.build_sanitized_transaction(
vote_only,
root_bank.as_ref(),
root_bank.get_reserved_account_keys(),
) else {
return Err(Reason::DeserializationError(
jito_protos::proto::bam_types::DeserializationError {
index: 0,
reason: DeserializationErrorReason::SanitizeError as 1132,
1,
)3
Fsleo.]

Remediation

Utilize the actual index of the failing transaction during error reporting to ensure accuracy.

Patch

Resolved in 3666184,

© 2025 Otter Audits LLC. All Rights Reserved. 16/18


https://github.com/jito-labs/jito-solana-jds/commit/366618448eefe358adf17eaa78ea7ca271ac8e9a

A — Vulnerability Rating Scale

We rated our findings according to the following scale. Vulnerabilities have immediate security implications.
Informational findings may be found in the General Findings.

CRITICAL

HIGH

MEDIUM

LOW

INFO

Vulnerabilities that immediately result in a loss of user funds with minimal preconditions.
Examples:

» Misconfigured authority or access control validation.
» Improperly designed economic incentives leading to loss of funds.

Vulnerabilities that may result in a loss of user funds but are potentially difficult to exploit.
Examples:

» Loss of funds requiring specific victim interactions.
+ Exploitation involving high capital requirement with respect to payout.

Vulnerabilities that may result in denial of service scenarios or degraded usability.
Examples:

+ Computational limit exhaustion through malicious input.
e Forced exceptions in the normal user flow.

Low probability vulnerabilities, which are still exploitable but require extenuating circumstances
or undue risk.

Examples:

+ Oracle manipulation with large capital requirements and multiple transactions.

Best practices to mitigate future security risks. These are classified as general findings.
Examples:

o Explicit assertion of critical internal invariants.
¢ Improved input validation.

© 2025 Otter Audits LLC. All Rights Reserved. 17 /18



B — Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an on-chain program. In other words, there is no way to steal funds or deny service,
ignoring any chain-specific quirks. This usually requires a deep understanding of the program'’s internal
interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could be manipulated by flash
loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle
is deployed on.

On the other hand, auditing the program’s implementation requires a deep understanding of the chain’s
execution model. While this varies from chain to chain, some common implementation vulnerabilities
include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to be more “checklist” style. In contrast,
design vulnerabilities require a strong understanding of the underlying system and the various interactions:
both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,
we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,
picking up on details that others may have missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2025 Otter Audits LLC. All Rights Reserved. 18/18



	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	[8.75em][l]OS-JBM-ADV-00  | Absence of Signature Verification in BAM Mode
	[8.75em][l]OS-JBM-ADV-01  | Improper Tip Handling and Missing Blocklist Enforcement
	[8.75em][l]OS-JBM-ADV-02  | Missing Domain Separator
	[8.75em][l]OS-JBM-ADV-03  | Risk of Transaction Replay
	[8.75em][l]OS-JBM-ADV-04  | Lack of Precompile Fee Accounting
	[8.75em][l]OS-JBM-ADV-05  | Denial of Service on New Batch Insertion
	[8.75em][l]OS-JBM-ADV-06  | Failure to Cap Commission Value
	[8.75em][l]OS-JBM-ADV-07  | Inconsistency in Vote Transaction Filtering Logic

	General Findings
	[8.75em][l]OS-JBM-SUG-00  | Incorrect Error Index Reporting

	Appendices
	Vulnerability Rating Scale
	Procedure


