
Jito BAM Validator
Security Assessment

August 8th, 2025 — Prepared by OtterSec

Nicola Vella nick0ve@osec.io

Michael Debono mixy1@osec.io

Jinwoo Lee jin@osec.io

Robert Chen r@osec.io

D
R
A
F
T

mailto:nick0ve@osec.io
mailto:mixy1@osec.io
mailto:jin@osec.io
mailto:r@osec.io

Table of Contents

Executive Summary 2

Overview 2

Key Findings 2

Scope 3

Findings 4

Vulnerabilities 5

OS-JBM-ADV-00 | Absence of Signature Verification in BAM Mode 7

OS-JBM-ADV-01 | Improper Tip Handling and Missing Blocklist Enforcement 8

OS-JBM-ADV-02 | Missing Domain Separator 9

OS-JBM-ADV-03 | Risk of Transaction Replay 10

OS-JBM-ADV-04 | Lack of Precompile Fee Accounting 11

OS-JBM-ADV-05 | Denial of Service on New Batch Insertion 12

OS-JBM-ADV-06 | Failure to Cap Commission Value 13

OS-JBM-ADV-07 | Inconsistency in Vote Transaction Filtering Logic 14

General Findings 15

OS-JBM-SUG-00 | Incorrect Error Index Reporting 16

Appendices

Vulnerability Rating Scale 17

Procedure 18

© 2025 Otter Audits LLC. All Rights Reserved. 1 / 18

D
R
A
F
T

01 — Executive Summary

Overview

Jito Labs engaged OtterSec to assess the bam-validatorbam-validator program. This assessment was conducted

between June 29th and August 5th, 2025. For more information on our auditing methodology, refer to

Appendix B.

Key Findings

We produced 9 findings throughout this audit engagement.

In particular, we identified a high-risk vulnerability concerning the lack of signature verification in BAM

mode, allowing malicious nodes to inject invalid packets and risk validator DoS and consensus divergence

(OS-JBM-ADV-00), and another signature replay issue, where the BAM auth challenge is signed without

domain separation, rendering the signature re-utilizable in other contexts (OS-JBM-ADV-02). Also, if the

transaction sending and confirmation fail, the payment transaction may still be processed later, risking

duplicate fee payments if the same transaction is re-sent after the failure (OS-JBM-ADV-03).

Additionally, tips may be lost due to uncranked payment instructions, and there is a possibility of restricted

accounts bypassing protections due to missing blocklist enforcement (OS-JBM-ADV-01), and the fee

calculation logic while calculating the payment amount overlooks precompile signature instruction costs,

potentially overestimating excess fees and overpaying the BAM node (OS-JBM-ADV-04).

Furthermore, while updating the builder commission value in the BAM manager module, there is a lack of

an upper bound check on the value of the commission, allowing excessively high inputs that may result in

an invalid state and disrupt validator reward distribution (OS-JBM-ADV-06).

We also recommended utilizing the actual index of the failing transaction when validating each transaction

in a batch, to improve the accuracy of error reporting (OS-JBM-SUG-00).

© 2025 Otter Audits LLC. All Rights Reserved. 2 / 18

D
R
A
F
T

02 — Scope

The source code was delivered to us in a Git repository at https://github.com/jito-labs/jito-solana-jds.

This audit was performed against commit 1d83c0a.

A brief description of the programs is as follows:A brief description of the programs is as follows:

NameName DescriptionDescription

bam-validator

Extends the Jito-Solana client to allow validators to delegate transaction

ordering to external schedulers via gRPC, enabling optimized block

construction while preserving validator control and Solana’s execution

rules.

© 2025 Otter Audits LLC. All Rights Reserved. 3 / 18

D
R
A
F
T

https://github.com/jito-labs/jito-solana-jds
https://github.com/jito-labs/jito-solana-jds/commit/1d83c0a343a1615a677ba7a8dba6037fec74f29b

03 — Findings

Overall, we reported 9 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact

and should be remediated as soon as possible. General findings do not have an immediate impact but will

aid in mitigating future vulnerabilities.

Severity Count

CRITICALCRITICAL 0

HIGHHIGH 2

MEDIUMMEDIUM 4

LOWLOW 2

INFOINFO 1

© 2025 Otter Audits LLC. All Rights Reserved. 4 / 18

D
R
A
F
T

04 — Vulnerabilities

Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-

bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

IDID SeveritySeverity StatusStatus DescriptionDescription

OS-JBM-ADV-00
HIGHHIGH RESOLVEDRESOLVED

Signature verification check is not performed

in BAM mode, allowing malicious nodes to in-

ject invalid packets and risk validator DoS and

consensus divergence.

OS-JBM-ADV-01
HIGHHIGH RESOLVEDRESOLVED

Tips may be lost due to uncranked payment in-

structions, and missing blocklist enforcement

allows restricted accounts to bypass protec-

tions.

OS-JBM-ADV-02
MEDIUMMEDIUM RESOLVEDRESOLVED

The BAM auth challenge is signed without do-

main separation, rendering the signature re-

utilizable in other contexts.

OS-JBM-ADV-03
MEDIUMMEDIUM RESOLVEDRESOLVED

Currently, if send_and_confirm_transactionsend_and_confirm_transaction
fails, the payment transaction may still be

processed later, risking duplicate fee payments.

OS-JBM-ADV-04
MEDIUMMEDIUM RESOLVEDRESOLVED

The fee calculation in

calculate_payment_amountcalculate_payment_amount overlooks

precompile signature instruction costs, po-

tentially overestimating excess fees and

overpaying the BAM node.

OS-JBM-ADV-05
MEDIUMMEDIUM RESOLVEDRESOLVED

insert_new_batchinsert_new_batch may exceed the con-

tainer’s capacity without evicting entries, re-

sulting in get_vacant_map_entryget_vacant_map_entry panicking

and creating a denial-of-service scenario.

© 2025 Otter Audits LLC. All Rights Reserved. 5 / 18

D
R
A
F
T

Jito BAM Validator Audit 04 — Vulnerabilities

OS-JBM-ADV-06
LOWLOW RESOLVEDRESOLVED

There is a lack of an upper bound check on the

value of builder commission, allowing exces-

sively high inputs that may result in an invalid

state and disrupt validator reward distribution.

OS-JBM-ADV-07
LOWLOW RESOLVEDRESOLVED

parse_bundleparse_bundle fails to reject vote transactions

from BAM nodes, deviating from BAM protocol

specifications.

© 2025 Otter Audits LLC. All Rights Reserved. 6 / 18

D
R
A
F
T

Jito BAM Validator Audit 04 — Vulnerabilities

Absence of Signature Verification in BAMMode HIGHHIGH OS-JBM-ADV-00

Description

Currently in BAM mode, packets bypass the sigverifysigverify step, implying transactions are not validated

for proper cryptographic signatures. Consequently, this allows a malicious BAM node to inject invalid

transactions into a validator’s pipeline, resulting in denial-of-service for validators and state divergence.

Such divergence creates consensus forking, violating the invariant that BAM nodes should only stall

transaction flow or fail, and not compromise correctness.

Remediation

Add sigverifysigverify checks for BAM-mode transactions.

Patch

Resolved in 8ce6993.

© 2025 Otter Audits LLC. All Rights Reserved. 7 / 18

D
R
A
F
T

https://github.com/jito-labs/jito-solana-jds/commit/8ce6993d8938c2422cbeff55437f7f6f794cfd70

Jito BAM Validator Audit 04 — Vulnerabilities

Improper Tip Handling andMissing Blocklist Enforcement HIGHHIGH OS-JBM-ADV-01

Description

The system fails to crank tip payment instructions before executing a tip transfer, causing pending tips to

be skipped and resulting in lost validator rewards. This undermines the incentive mechanism by reducing

earned fees. Additionally, the blocklist for the tip payment account is not enforced, allowing restricted or

malicious accounts to interact with the system.

Remediation

Ensure the tip payment instructions aren’t cranked before a tip transfer and add the blocklist for the tip

payment account.

Patch

Resolved in ddf9e55 and 8370f94.

© 2025 Otter Audits LLC. All Rights Reserved. 8 / 18

D
R
A
F
T

https://github.com/jito-labs/jito-solana-jds/commit/ddf9e55fd105ce5c3f71fd3f89f2f5ce27e92b8c
https://github.com/jito-labs/jito-solana-jds/commit/8370f94bd58c641a94150adfa47c8a27c0a7d889

Jito BAM Validator Audit 04 — Vulnerabilities

Missing Domain Separator MEDIUMMEDIUM OS-JBM-ADV-02

Description

prepare_auth_proofprepare_auth_proof in bam_connectionbam_connection signs arbitrary challenge data from the BAM scheduler

without applying domain separation. This results in a vulnerability because the signed message may be

re-utilized in unintended contexts. Without a fixed prefix, the signature is not cryptographically bound

to the BAM authentication domain. To prevent misuse, the signed message should include a domain

separator.

>_ core/src/bam_connection.rs rust

async fn prepare_auth_proof(
validator_client: &mut BamNodeApiClient<tonic::transport::channel::Channel>,
cluster_info: Arc<ClusterInfo>,

) -> Option<AuthProof> {
let request = tonic::Request::new(AuthChallengeRequest {});
let Ok(resp) = validator_client.get_auth_challenge(request).await else {

error!("Failed to get auth challenge");
return None;

};
let resp = resp.into_inner();
let challenge_to_sign = resp.challenge_to_sign;
let challenge_bytes = challenge_to_sign.as_bytes();

let signature = Self::sign_message(cluster_info.keypair().as_ref(), challenge_bytes)?;
[...]

}

Remediation

Pre-append a domain separator such as \xffsolana offchain-jito bam\xffsolana offchain-jito bam to the message in

bam_connectionbam_connection so that it is only possible for it to be exclusively utilized for only BAM authentication.

Patch

Resolved in f55c5b5.

© 2025 Otter Audits LLC. All Rights Reserved. 9 / 18

D
R
A
F
T

https://github.com/jito-labs/jito-solana-jds/commit/f55c5b5541460e3439a9ef202afb0274caa39696

Jito BAM Validator Audit 04 — Vulnerabilities

Risk of Transaction Replay MEDIUMMEDIUM OS-JBM-ADV-03

Description

In the current implementation, bam_payment::payment_successfulbam_payment::payment_successful assumes that a failure in

send_and_confirm_transactionsend_and_confirm_transaction implies the transaction did not land on-chain. However, due to

potential network or RPC issues, the transaction may have succeeded without local confirmation. Retrying

the transaction in such cases may result in duplicate payments and overpayment.

>_ core/src/bam_payment.rs rust

fn payment_successful(
rpc_url: &str,
txn: &VersionedTransaction,
lowest_slot: Slot,
highest_slot: Slot,

) -> bool {
// Send it via RpcClient (loopback to the same node)
let rpc_client = RpcClient::new_with_commitment(rpc_url, CommitmentConfig::confirmed());
if let Err(err) = rpc_client.send_and_confirm_transaction(txn) {

error!(
"Failed to send payment transaction for slot range ({}, {}): {}",
lowest_slot, highest_slot, err

);
false

} [...]
}

Remediation

Utilize durable nonces to ensure the transaction is only valid for a single execution.

Patch

Bam payments have been disabled.

© 2025 Otter Audits LLC. All Rights Reserved. 10 / 18

D
R
A
F
T

Jito BAM Validator Audit 04 — Vulnerabilities

Lack of Precompile Fee Accounting MEDIUMMEDIUM OS-JBM-ADV-04

Description

The fee calculation logic in calculate_payment_amountcalculate_payment_amount in bam_paymentbam_payment incorrectly assumes that

the base cost of a transaction is solely determined by the number of signatures. It subtracts a fixed

BASE_FEE_LAMPORT_PER_SIGNATUREBASE_FEE_LAMPORT_PER_SIGNATURE from the total fee to compute the payment base, but this neglects

the costs of precompile signature instructions such as ed25519ed25519 , secp256k1secp256k1 , and secp256r1secp256r1 , which
incur significant compute unit costs. As a result, the function overestimates the fee and overpays the BAM

node.

>_ core/src/bam_payment.rs rust

pub fn calculate_payment_amount(blockstore: &Blockstore, slot: u64) -> Option<u64> {
[...]
const BASE_FEE_LAMPORT_PER_SIGNATURE: u64 = 5_000;
Some(

block
.transactions
.iter()
.map(|tx| {

let fee = tx.meta.fee;
let base_fee = BASE_FEE_LAMPORT_PER_SIGNATURE

.saturating_mul(tx.transaction.signatures.len() as u64);
fee.saturating_sub(base_fee)

})
.sum::<u64>()
.saturating_mul(COMMISSION_PERCENTAGE)
.saturating_div(100),

)
}

Remediation

Ensure proper accounting, considering all protocol-imposed base costs, including precompile execution.

Patch

Resolved in ed0e01a.

© 2025 Otter Audits LLC. All Rights Reserved. 11 / 18

D
R
A
F
T

https://github.com/jito-labs/jito-solana-jds/commit/ed0e01a251cf4d1e04bbdb0b6049b1e5da8ae6d7

Jito BAM Validator Audit 04 — Vulnerabilities

Denial of Service on New Batch Insertion MEDIUMMEDIUM OS-JBM-ADV-05

Description

get_vacant_map_entryget_vacant_map_entry in transaction_state_containertransaction_state_container panics when the internal SlabSlab exceeds

its capacitycapacity , due to an assertion. This assertion panics when the number of elements in
id_to_transaction_stateid_to_transaction_state reaches its maximum capacitycapacity . This is problematic because

insert_new_batchinsert_new_batch does not check or preemptively manage capacity before calling it multiple times in

a loop.

>_ core/src/banking_stage/transaction_scheduler/transaction_state_container.rs rust

fn get_vacant_map_entry(&mut self) -> VacantEntry<BatchIdOrTransactionState<Tx>> {
assert!(self.id_to_transaction_state.len() < self.id_to_transaction_state.capacity());
self.id_to_transaction_state.vacant_entry()

}

Thus, since insert_new_batchinsert_new_batch does not perform any eviction similar to what push_ids_into_queuepush_ids_into_queue
does, if multiple batches are inserted rapidly, the SlabSlab may exceed capacitycapacity , triggering a panic on
the next get_vacant_map_entryget_vacant_map_entry , creating a denial of service scenario.

Remediation

Replace the hard assertion with a graceful fallback.

Patch

Resolved in 18ea92b.

© 2025 Otter Audits LLC. All Rights Reserved. 12 / 18

D
R
A
F
T

https://github.com/jito-labs/bam-client/commit/18ea92bd3d62a63b55db033b58a032b8f2f8e491

Jito BAM Validator Audit 04 — Vulnerabilities

Failure to Cap Commission Value LOWLOW OS-JBM-ADV-06

Description

update_block_engine_key_and_commissionupdate_block_engine_key_and_commission in bam_managerbam_manager blindly accepts and applies the

builder_commissionbuilder_commission value from the BAM config without enforcing an upper bound. This is risky

because an abnormally high commission may create issues downstream in the validator, potentially

resulting in an invalid state that affects validators’ MEV earnings.

>_ core/src/bam_manager.rs rust

fn update_block_engine_key_and_commission(
config: Option<&ConfigResponse>,
block_builder_fee_info: &Arc<Mutex<BlockBuilderFeeInfo>>,

) {
[...]
let commission = builder_info.builder_commission;
let mut block_builder_fee_info = block_builder_fee_info.lock().unwrap();
block_builder_fee_info.block_builder = pubkey;
block_builder_fee_info.block_builder_commission = commission;

}

Remediation

Add a sanity check to reject unreasonable commission values to help maintain correctness.

Patch

Resolved in 75c2319.

© 2025 Otter Audits LLC. All Rights Reserved. 13 / 18

D
R
A
F
T

https://github.com/jito-labs/jito-solana-jds/commit/75c2319d9c51018d3a49e6af4aaee3122ac12ed2

Jito BAM Validator Audit 04 — Vulnerabilities

Inconsistency in Vote Transaction Filtering Logic LOWLOW OS-JBM-ADV-07

Description

BamReceiveAndBuffer::parse_bundleBamReceiveAndBuffer::parse_bundle does not enforce BAM’s specification that prohibits vote

transactions in incoming bundles. Without this check, vote transactions may be accepted and scheduled,

violating protocol rules. Add a check to reject vote transactions from BAM nodes.

Remediation

Reject such transactions in parse_bundleparse_bundle , ensuring adherence to BAM specifications.

Patch

Resolved in fc1bb8f.

© 2025 Otter Audits LLC. All Rights Reserved. 14 / 18

D
R
A
F
T

https://github.com/jito-labs/jito-solana-jds/commit/fc1bb8f36a8943921a9944a27ade6ba0196e5ee5

05 — General Findings

Here, we present a discussion of general findings during our audit. While these findings do not present an

immediate security impact, they represent anti-patterns and may result in security issues in the future.

IDID DescriptionDescription

OS-JBM-SUG-00

parse_batchparse_batch incorrectly reports all deserialization errors at index: 0index: 0
, even when failures occur later in the batch, resulting in inaccurate error

attribution.

© 2025 Otter Audits LLC. All Rights Reserved. 15 / 18

D
R
A
F
T

Jito BAM Validator Audit 05 — General Findings

Incorrect Error Index Reporting OS-JBM-SUG-00

Description

parse_batchparse_batch in bam_receive_and_bufferbam_receive_and_buffer validates each transaction in a batch, but incorrectly

hardcodes index: 0index: 0 when reporting deserialization errors, even though it is processing multiple

transactions in a loop and the failure occurs in a later transaction. This results in misleading diagnostics

hindering the debugging process, as the hardcoded indexindex may misrepresent which transaction failed.

>_ core/src/banking_stage/transaction_scheduler/bam_receive_and_buffer.rs rust

fn parse_batch(
batch: &AtomicTxnBatch,
bank_forks: &Arc<RwLock<BankForks>>,

) -> Result<ParsedBatch, Reason> {
[...]
for (index, parsed_packet) in parsed_packets.drain(..).enumerate() {

// Check 1
let Some((tx, deactivation_slot)) = parsed_packet.build_sanitized_transaction(

vote_only,
root_bank.as_ref(),
root_bank.get_reserved_account_keys(),

) else {
return Err(Reason::DeserializationError(

jito_protos::proto::bam_types::DeserializationError {
index: 0,
reason: DeserializationErrorReason::SanitizeError as i32,

},
));

};[...]
}
[...]

}

Remediation

Utilize the actual indexindex of the failing transaction during error reporting to ensure accuracy.

Patch

Resolved in 3666184.

© 2025 Otter Audits LLC. All Rights Reserved. 16 / 18

D
R
A
F
T

https://github.com/jito-labs/jito-solana-jds/commit/366618448eefe358adf17eaa78ea7ca271ac8e9a

A— Vulnerability Rating Scale

We rated our findings according to the following scale. Vulnerabilities have immediate security implications.

Informational findings may be found in the General Findings.

CRITICALCRITICAL Vulnerabilities that immediately result in a loss of user funds with minimal preconditions.

Examples:

• Misconfigured authority or access control validation.

• Improperly designed economic incentives leading to loss of funds.

HIGHHIGH
Vulnerabilities that may result in a loss of user funds but are potentially difficult to exploit.

Examples:

• Loss of funds requiring specific victim interactions.

• Exploitation involving high capital requirement with respect to payout.

MEDIUMMEDIUM Vulnerabilities that may result in denial of service scenarios or degraded usability.

Examples:

• Computational limit exhaustion through malicious input.

• Forced exceptions in the normal user flow.

LOWLOW Low probability vulnerabilities, which are still exploitable but require extenuating circumstances

or undue risk.

Examples:

• Oracle manipulation with large capital requirements and multiple transactions.

INFOINFO Best practices to mitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants.

• Improved input validation.

© 2025 Otter Audits LLC. All Rights Reserved. 17 / 18

D
R
A
F
T

B — Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and

implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound

in the context of an on-chain program. In other words, there is no way to steal funds or deny service,

ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal

interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could be manipulated by flash

loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle

is deployed on.

On the other hand, auditing the program’s implementation requires a deep understanding of the chain’s

execution model. While this varies from chain to chain, some common implementation vulnerabilities

include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to be more “checklist” style. In contrast,

design vulnerabilities require a strong understanding of the underlying system and the various interactions:

both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,

we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,

picking up on details that others may have missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some

insight into our auditing procedure and thought process.

© 2025 Otter Audits LLC. All Rights Reserved. 18 / 18

D
R
A
F
T

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	[8.75em][l]OS-JBM-ADV-00 | Absence of Signature Verification in BAM Mode
	[8.75em][l]OS-JBM-ADV-01 | Improper Tip Handling and Missing Blocklist Enforcement
	[8.75em][l]OS-JBM-ADV-02 | Missing Domain Separator
	[8.75em][l]OS-JBM-ADV-03 | Risk of Transaction Replay
	[8.75em][l]OS-JBM-ADV-04 | Lack of Precompile Fee Accounting
	[8.75em][l]OS-JBM-ADV-05 | Denial of Service on New Batch Insertion
	[8.75em][l]OS-JBM-ADV-06 | Failure to Cap Commission Value
	[8.75em][l]OS-JBM-ADV-07 | Inconsistency in Vote Transaction Filtering Logic

	General Findings
	[8.75em][l]OS-JBM-SUG-00 | Incorrect Error Index Reporting

	Appendices
	Vulnerability Rating Scale
	Procedure

